
NASA-C_-203564

Performance of the Galley Parallel File System

Nils Nieuwejaar David Kotz

Department of Computer Science

Dartmouth College, Hanover, NH 03755-3510

{nils, dfk}Ocs, dartmouth, edu

Abstract

As the I/O needs of parallel scientific applications increase,
file systems for multiprocessors are being designed to provide

applications with parallel access to multiple disks. Many
parallel file systems present applications with a conventional

Unix-like interface that allows the application to access mul-

tiple disks transparently. This interface conceals the paral-

lelism within the file system, which increases the ease of
programmability, but makes it difficult or impossible for
sophisticated programmers and libraries to use knowledge

about their I/O needs to exploit that parallelism. Further-

more, most current parallel file systems are optimized for a

different workload than they are being asked to support. We
introduce Galley, a new parallel file system that is intended

to efficiently support realistic parallel workloads. Initial ex-

periments, reported in this paper, indicate that Galley is
capable of providing high-performance I/O to applications

that access data in patterns that have been observed to be
common.

1 Introduction

Multiprocessors have been steadily increasing in computa-

tional performance, but the power of the I/O subsystem has
not kept pace. This disparity is partly due to the physical

limitations of storage hardware, but a more significant rea-
son for this performance gap is the limitations of current par-

allel file systems. Most modern parallel file systems were de-
signed around several key assumptions about how scientific

applications would use such systems. Several recent analy-

ses of file-system workloads on production multiprocessors

running primarily scientific applications show that many of
these assumptions are incorrect [KN94, PEK+95, NKP+95].
Specifically, it was commonly believed that parallel, scien-

tific applications would have behavior similar to that of ex-

isting sequential and vector scientific applications [Pie89,

PFD289, LIN+93]. These applications tend to access large

files in large r consecutive chunks [MKgl, PP93]. Studies of

Copyright _1996 by the Association for Computing
Machinery, Inc. PerlliSsion to lake digital

or hard copies of part or all of this work for

personal or classroom use is granted without fee

provided that copies are not lade or distributed
for profit or commercial advantage and that neg

copies bear this notice and the full citation on

the first page. Copyrights for components of this

work owned by others than ACM lust be honored.

Abstracting with credit is permitted.

two parallel file-system workloads, supporting many users
and running a variety of applications in a variety of scien-
tific domains, under both data-parallel and control-parallel

programming models, show that many parallel, scientific ap-
plications make many smMl. non-consecutive requests to the

file system [KN94, PEK+95, NKP+95, NK95]. These stud-

ies suggest that most parallel file systems have been opti-
mized for a workload that is different than that which actu-
ally exists.

Using the results from these workload studies and f_om
performance evaluations of existing parallel file systems, we

have developed a new paralhl file system that is able to
deliver high performance to a variety of applications, such
a.s those observed in actual workloads.

The remainder of this paper is organized as follows. In

Section 2 we describe existing parallel file systems, how they
are used in practice, and how they fail to meet the needs of
the applications that rely on them. In Section 3 we describe
a new way of structuring files and the interface that is used

to access those files. Section 4 examines the performance

of Galley. In Section 5 we discuss some related work, and
finally, in Section 6, we conclude and describe our future
plans.

2 Background

2.1 Parallel File Systems

Most existing multiprocessor file systems are based on the
conventional Unix-like file-system interface in which files are

seen as an addressable, linear stream of bytes [BGST93,
Pie89, tIN+93, WMR + 94]. To provide higher throughput,
the file system typically declusters files (i.e., scatters the
blocks of each file across multiple disks), thus allowing par-
allel access to the file, reducing the effect of the bottleneck

imposed by the relatively slow disk speed. Although the
file is actually scattered across many disks, the underlying

parallel structure of the file is hidden from the application
by the higher-level abstraction. The interface is limited to

such operations as open(), close(), read(), write(), and

neek(), all of which manipulate an implicit file pointer.

One enhancement to the conventional interface, which is

offered by several multiprocessor file systems, is a file pointer

that is shared among the processes in an application and
provides a mechanism for regulating access to a shared file

by those processes [Pie89, BGST93]. The simplest shared

file pointer is one which supports an atomic-append mode

(as in [LMKQ89], page 174). Most parallel file systems pro-
vide this mode in addition to several more structured access

modes (e.g., round-robin access to the file pointer).

Copyright 1996 by ACM. Appeared in IOPADS '96, May 1996, pp. 83-94.

IOPADS is the Workshop on I/O in Parallel and Distributed Systems.

2 4 19 I

We compare Galley to other, more sophisticated, parallel

file systems in Section 5.

2.2 Workload Characterization

Experience has shown that the simple, Unix-like mode] of a

file is well suited to uniprocessor applications that tend to

access files in a simple, sequential fashion [OCH+85]. It has

similarly proven to be appropriate for scientific, vector ap-

plications that also tend to access files sequentiMly [MK91].
Until recently, however, there had been no investigation into
whether this file model and interface were well suited to mas-

sively parallel scientific applications.

To determine whether this model was appropriate, we ex-
amined the file-system workloads on two different massively

parallel processors, running two different application work-

loads [KN94, PEK+95]. These studies show that sequential

access to consecutive portions of a file is much less com-

mon in a multiprocessor environment than in uniprocessor

or supercomputer environments. In INK95, NKP+95], we

looked more closely at the specific patterns in which appli-

cations accessed the files in a parallel file system. We found

that these applications frequently accessed files in regular,

repeating patterns. For example, the most common pattern

was a series of requests, all of the same size, separated by a
common stride within the file. This pattern is likely to arise

if, for example, a two-dimensional matrix is stored on disk in

row-major order, and an application distributes the columns

of the matrix across its processes in a CYCLIC fashion (us-

ing High Performance Fortran terminology [HPF93]).
In addition to assuming that parallel scientific applica-

tions would access files consecutively, most parallel file sys-

tem implementations assume that these files would be ac-

cessed in large chunks -- hundreds of kilobytes or megabytes
at a time. Our workload characterization studies show that

while some parallel scientific applications do issue a rela-
tively small number of large requests, there are many ap-

plications that issue thousands or millions of small (< 200
bytes) requests, putting a great deal of stress on current file
systems.

While the standard Unix-like interface has worked well

in the past, it seems clear that it is not well suited to parallel

applications, which have more complicated access patterns

than uniprocessor and supercomputer applications. Fur-

thermore, the tracing study described in [KN94] found that

shared file pointers were rarely used in practice and suggests
that poor performance and a failure to match the needs of
applications are the likely causes. This finding indicates that

the simple extensions offered by most of today's parallel file

systems are not a sufficient adaptation of this interface.

3 File Structure

While most existing multiprocessor file systems are based on
the linear file model, the underlying parallel structure of the
file is hidden from the application. Galley uses a more com-

plex file model that should lead to greater flexibility and

performance. In addition to providing high performance,

Galley was designed to be 'library friendly', giving program-
mers the capability to easily layer abstractions above the file
system. We summarize the model here; full details of this
structure may be found in [NK96].

Subtile Subtile

i ir,otlc i

i i-,Oitl[i

i F'Ot_ I

IOP 0 lOP [

f

I
J

lOP 2

Figure 1: Three dimensional structure of files in the Galley

File System. The portion of the file residing on lOP 0 is
shown in greater detail than the portions on the other two
lOPs.

3.1 Subfiles

The linear model can allow good performance when the re-

quest size generated by the application is larger than the
declustering-unit size, as multiple disks are being used in

parallel for each request. The declustering-unit size is fre-
quently measured in kilobytes (e.g., 4KB in Intel's CFS
[Pie89]), however, while our workload characterization stud-

ies show that the typical request size in a parallel application

is much smaller: frequently under 200 bytes. This dispaz-
ity means that most of the individual requests generated by
parallel applications are not being executed in parallel. An-
other problem with the linear file model is that a data.set
may have a natural, parallel mapping onto multiple disks

that is not easily captured by the standard cyclic block-
declustering schemes. One such example may be seen in

the Flexible Image Transport System (FITS) data format,

which is used for astronomical data [NAS94]. A FITS file

is organized as a series of records, each of which contains a
key with multiple fields and one or more data elements. It

is not clear that blindly striping these records across mul-
tiple disks is the optimal approach in a parallel file system.

Rather, one could distribute the data across the disks using
the keys and knowledge about how the dataset will be used

to determine a partitioning scheme that results in highly
parallel access. Finally, the parallel-I/O algorithms commu-

nity has frequently argued for this kind of increased control

over declustering [CK93, WGRW93].
To address these problems, Galley allows applications to

fully control the way in which data is declustered across
the IOPs, as well as which lOP they wish to access in each

request. To allow this behavior, files are composed of one or
more sub files, each of which resides entirely on a single IOP,

and which may be directly addressed by the application.

3.2 Forks

Each subtile in Galley is structured as a collection of one or
more independent .forks, each of which is a linear, addre_-

able collection of bytes, similar to a traditional Unix file.
This three-dimensional file structure is illustrated in Fig-
ure 1. Note that there is no requirement that all subfiles

have the same number of forks, or that all forks have the
same size.

The use of forks allows further application-defined struc-
turing. This structuring may include storing distinct types

of data in separate forks (e.g., a list of pressures in one fork
and a list of temperatures in another), or it may involve stor-
ing metadata in one fork and 'real' data in another (e.g.,

a compression library similar to that described in [SW95]
could store compressed data chunks in one fork and direc-
tory information in another).

An example of using forks for both data and metadata

may be found in data files like those described in [KFG94].

The style of FITS file described in this study contained
records with 6 keys, describing the frequency domain, the

antenna, and the time the data was collected. The data
portion of each record contained a pair of data elements,

one for each of two polarizations, and each data element
contains floating-point triples for each of 31 frequencies. Al-

though most queries to the data only involved one of the two

polarizations, the two sets of data were stored together in a

single file to reduce the total amount of diskspace (by not

replicating the key information). Unfortunately, this meant

that an application generally read all the data for each po-

larization when it was only interested in one set. Using the

Galley file system, a programmer could choose to store the
keys in one fork, the data for one polarization in a second

fork, and the data for the other polarization in a third fork.

In addition to reducing the amount of data we need to read
when we are only interested in one of the two sets of data,

by isolating the keys in their own fork we reduce the amount

of data we need to read when scanning for a given key pair.
Unlike segmenting a traditional file into three regions, the

fork-based structure allows each fork to grow as more records
are added.

A further discussion of the applications and benefits of

this structure can be found in INK96].

3.3 Data Access Interface

The standard Unix interface provides only simple primi-

tives for accessing the data in files. These primitives are

limited to read () ing and writ e () ing consecu rive regions of
a file. As discussed above, recent studies show that these

primitives do not match the needs of many parallel applica-
tions INK95, NKP+95]. Specifically, parallel scientific appli-

cations frequently make many small requests to a file, with
strided access patterns.

We define two types of strided patterns. A simple-strided

access pattern is one in which all the requests are the same
size, and there is a constant distance between the begin-

ning of one request and the beginning of the next. A group
of requests that form a strided access pattern is called a

strided segment. A nested-stridedaccess pattern is similar to
a simple-strided pattern, but rather than repeating a single

request at regular intervals, the application repeats a strided

segment at regular intervals. Studies show that both simple-
and nested-strided patterns are common in parallel, scien-

tific applications [NK95, NKP+95]. Indeed, in one study,
over 90% of the requests in the entire workload were part of

one of these two patterns.

Galley provides three interfaces that allow applications
to explicitly make regular, structured requests such as those
described above, as well as one interface for unstructured
requests. These interfaces allow us to combine many small

requests into a single, larger request, which can lead to im-

proved performance in two ways. First, reducing the number
of requests can lower the aggregate latency costs, particu-

larly for those applications that issue thousands or millions
of tiny requests. Second, recent work has shown that pro-

dding a file system with more information about an applica`

tion's access patterns can lead to tremendous performance

improvements by introducing opportunities for intelligent
scheduling of I/O and communication [Kot94].

The higher-level interfaces offered by Galley are summa.

rized below. These interfaces are described in greater detail,
and examples are provided, in [NK96, NK95].

3.3.1 Simple-strided Requests

gfs_read_strided(int fid, void *bur, ulong offset,
ulong rec_size, int f_stride,

int m_stride, int quant)

Beginning at offset, the file system will read quant
records of rec_size bytes, where the offset of each record
is f_stride bytes greater than that of the previous record.
The records are stored in memory beginning at bur. The
offset into the buffer is changed by ,,-stride bytes after
each record is transferred. Note that either the file stride

(f-stride) or the memory stride (--._tride) may be nega-
tive. The call returns the number of bytes transferred.

When ,,_stride is equal to rec_size, data will be gath-

ered from disk, and stored contiguously in memory. When
f_stride is equal to rec_size, data will be read from a con-
tiguous region of a file, and scattered in memory. It is also
possible for both m._tride and f.stride to be different than
rec-size, and possibly each other.

Naturally, there is a corresponding gfs_write-stridad()
call.

3.3.2 Nested-strided Requests

gfs_read_nented(iut lid, void *buf, ulong offset,
ulong rec_size, struct stride *vet,
int levels)

The vec is a pointer to an array of (f-stride, --._tride,

quantity) triples listed from the innermost level of nesting
to the outermost. The number of levels of nesting is indi-
cated by levels.

3.3.3 Nested-batched Requests

While we found that most of the small requests in the ob-
served workloads were part of strided patterns, there may
well be applications that could benefit from some form of
high-level, regular request, but would find the nested-strided

interface too restrictive. For those applications, we provide
a nested-batchedinterface. The nested-batched interface al-

lows applications to make an arbitrary series of requests,

which may then be repeated at regular intervals. This in-
terface is nested in that any of the requests in the arbitrary
series may themselves be a batched request. To conserve

space, we do not present the details here (see [NK96, NK95]).

3.3.4 List Requests

Finally, in addition to these structured operations, Galley
provides a more general file interface, called the list inter-
face, which is similar to the POSIX lio.listio() inter-

face [IBM94]. This interface simply takes an array of (file

offset, memory offset, size) triples from the application. This
interface is useful for applications with access patterns that

donothaveany inherently regular structure. While this in-
terface essentially functions as a series of simple reads and

writes, it provides the file system with enough information
to make intelligent disk-scheduling decisions, as well as the

ability to coMesce many small pieces of data into larger mes-
sages for transferring between CPs and IOPs.

4 Performance

Performance studies of parallel tile systems tend to focus on

the performance of large, sequential requests. Indeed, most

do not even examine the performance of requests of fewer

than many kilobytes [Nit92, BBH95, KR94]. As discussed
above, recent workload characterizations show that para3Jel

file systems are frequently called upon to service many small

requests. This disparity means that most performance stud-
ies actually fail to examine how a file system can be expected

to perform when running real applications in a production
environment.

4.1 Experimental Platform

The Galley File System was designed to be portable across

workstation clusters and massively parallel processors. The

results in this paper were obtained on the IBM SP-2 at

NASA Ames' Numerical Aerodynamic Simulation facility.
This system has 160 nodes, each running AIX 3.2.5, but no

more than 140 are available for general use. Each node has

a 66.7 MhZ POWER2 processor, at least 128 megabytes

of memory, and is connected to IBM's high-performance

switch. While the switch allows throughput of up to 34 MB/s

using one of IBM's message-passing libraries (PVMe, MPL,
or MPI), those libraries cannot operate in a multithreaded

environment. Furthermore, neither MPL nor MPI allow ap-

plications to be implemented as persistent servers and tran-
sient clients. As a result of these limitations, Galley is im-

plemented on top of TCP/IP, with a maximum throughput
of approximately 17 MB/s on the SP-2.

Each IOP in Galley controls a single disk, which it log-

ically partitions into 32K blocks. Each IOP also main-

tains a cache of the most recently used blocks from the
disk it controls. For this study, the size of each cache was

34 megabytes, large enough to hold 1100 blocks. Galley does
not attempt to prefetch data for two reasons. First, indis-

criminate prefetching can cause the cache to thrash [Nit92].

Second, prefetching is based on the assumption that the
system can intelligently guess what an application is going

to request next. Using the higher-level requests described

above, there is frequently no need for Galley to make guesses
about an application's behavior; the application is able to
explicitly provide that information to each lOP.

Although each node on the SP-2 has a locad disk, access

to that disk must be performed through AIX's Journa_ng

File System. While Galley was originally implemented to
use these disks, we felt that our performance results were

being inflated by the prefetching and caching provided by

JFS. Specifically, we frequently mezL_|Jred apparent through-
puts of over 10 MB/s from a single disk. Accordingly, the
performance results presented here were obtained through
the use of a simulation of an HP 97560 SCSI hard disk,
which has an average seek time of 13.5 ms and a maximum

sustained throughput of 2.2 MB/s [HP91]. Each IOP pro-
vides access to one simulated disk.

Our implementation of the disk model was based on ear-
lier implementations [RW94, KTR94]. Among the factors

simulated by our model are head-switch time, track-switch
time, SCSI-bus overhead, controller overhead, rotational la-

tency, and the disk cache. To validate our model, we used

a trace-driven simulation, using data provided by Hewlett-
Packard and used by Ruemmler and Wilkes in their study. 1

Comparing the results of this trace-driven simulation with

the measured results from the actual disk, we obtained a

demerit figure (see [RW94] for a discussion of this measure}

of 5.0%, indicating that our model was extremely accurate.

The simulated disk is integrated into Galley by creating
a new thread on each IOP to execute the simulation. When

the thread receives a disk request, it calculates the time

required to complete the request, and then suspends itself

for that length of time. While, in most cases, the disk thread

does not actually load or store the requested data, metadata

blocks must be preserved. To avoid losing that data, the
disk thread maintains a small cache, which is used to store

'important' data. When the simulation thread copies data
to or from its cache, the amount of time required to complete

the copy is deducted from the amount of time the thread is

suspended. It should be noted that the remainder of the

Galley code is unaware that it is accessing a simulated disk.

4.2 Access Patterns

We examine the performance of Galley under several differ-

ent access patterns, each of which is composed of a series of
requests for fixed-size pieces of data, or records. The pat-
terns we examine are shown in Figure 2. While these pat-

terns do not directly correspond to a particular 'real world'

application, they are representative of the general patterns

we observed to be most common in production multipro-

cessor systems. Our analysis is done with a single file that
contains a single subtile (each with a single fork) on each
lOP, and the patterns shown in Figure 2 reflect the pat-

terns that we access from each IOP. The correspondence
between the lOP-level access patterns we use in this study,
and the file-level patterns observed in actual applications, is

discussed for each pattern below.

The simplest access pattern we cMl broadcast. With this

access pattern every compute node reads the whole file (i.e.,

the lOPs broadcast the whole file to all the CPs). This ac-
cess pattern models the series of requests we would expect

to see when all the nodes in an application read & shaxed
file, such as a configuration file or the initial state for a sim-
ulation. Since an application that wants to access all the
data in a file must access all the data in every subtile, a

broadcast pattern at the tile level clearly corresponds to a
broadcast pattern at each subtile. Although it seems coun-

terintuitive for an application to access large, contiguous

regions of a file in small chunks, such behavior does occur
in practice. One likely reason that data would be accessed

in this fashion is that records stored contiguously on disk

are to be stored non-contiguously in memory. In the sim-
plest case, this pattern would be similar to the interleaved

pattern described below, with the interleaving occurring in
memory rather than on disk. Since it seems unlikely that an

application would want every node to write to the entire file,

we did not measure the performaxtce of the broadcast-write
case.

1Kindly provided to us by John Wilkes and HP. Contact John

Wilkes at wilkesOhplabs.hp.com for information about obtaining the

t l'8_ges,

(a) Broadcast (b) Partitioned

sa I I m I I m I I E I I m I I m I J]

(c) Interleaved

Figure 2: The three access patterns examined in this study. Each pattern is displayed with two types of view: the pattern
as applied to a linear file, and matrix distributions that could give rise to the pattern. We assume that the matrices are

stored in row-major order. Each block corresponds to a single record in the file, and the highlighted blocks represent the
records accessed by a single compute node in a group of four.

The next access pattern we refer to as partitioned. With

this pattern, each compute node accesses a distinct, contigu-

ous region of each file. This pattern could represent either
a one-dimensional partitioning of data or the series of ac-
cesses we would expect to see if a two-dimensional matrix

were stored on disk in row-major order, and the application
distributed the rows of the matrix across the compute nodes

in a BLOCK fashion (using HPF terminology [HPF93]). A
partitioned access pattern at the tile level can map onto two
different access patterns at the IOP level. The first pattern
arises if the file is distributed across the disks in a BLOCK

fashion; that is the first 1/n of the file bytes in the tile are

mapped onto the first of the n IOPs, and so forth. For each

IOP, this mapping results in an access pattern similar to
a broadcast pattern with 1 compute processor. The other,
more interesting, mapping distributes blocks of data across

the disks in a CYCLIC fashion, as in most implementations
of a linear file model. This distribution results in accesses

by each CP to each IOP. In a system with 4 CPs, the first

CP would access the first 1/4 of the data in each subtile,
and so forth. Thus a partitioned pattern at the file level
leads to a partitioned pattern at each IOP. As with the
broadcast pattern, applications may access data in this pat-
tern using a small record size if the the data is to be stored
non-contiguously in memory.

The final access pattern is an interleaved pattern. In this
pattern, each compute node requests a series of noncontigu-
ous, but regularly spaced, records from a file. For our test-
ing, the interleaving was based on the record size. That is,

if 16 compute nodes were reading a file with a record size
of 512 bytes, each node would read 512 bytes and then skip
ahead 8192 (16"512) bytes before reading the next chunk of

data. This pattern models the accesses generated by an ap-
plication that distributes the columns of a two-dimensional

matrix across the processors in an application, in a CYCLIC
fashion, if the matrix is stored in a linear file in row-major or-
der. Assume the linear file is distributed traditionally, with
blocks distributed across the subfiles in a CYCLIC fashion.
In the simplest case, the block size might be evenly divisible
by the product of the record size and the number of CPs. In

this case, every block in the file is accessed with the same in-

terleaved pattern, and any rearrangement of the blocks (be-
tween or within disks) will result in the same subtile-access
pattern. Thus, the blocks can be declustered across the sub-

files, but the access pattern within each subtile will still be

interleaved. There are, of course, more complex mappings
of an interleaved file-level pattern to an IOP-level pattern,
but we focus on the simplest case.

For each test, we held the number of compute proces-
sors constant at 16, and varied the number of IOPs (each
with one disk) from 4 to 64. Thus, the CP:IOP ratio var-
ied from 1:4 to 4:1. Each test began with an empty buffer
cache on each IOP, and each write test included the time re-

quired for all the data to actually be written to disk. Each
fork was laid out contiguously on disk, allowing us to better
understand how each access pattern affects the system's per-
formance. Whih the size of each fork was fixed, the amount

of data accessed for each test was not. Since the system's

performance on the fastest tests was several orders of mag-
nitude faster than on the slowest tests, there was no fixed
amount of data that would provide useful results across all
tests. Thus, the amount of data accessed for each test var-

ied from 4 megabytes (writing 64-byte records to 4 IOPs) to

2 gigabytes (earing 64-kilobyte records from 64 IOPs).

Duringpreliminarytesting,wefoundthatcommunica-
tionson theSP-2wouldoccasionoalyappearto freezefor
a periodof time. Thisproblemwouldleadto anomalous
results;onerunin a series would take many times longer

to complete than the others. Fortunately, this problem was

severe enough that we could easily detect when it had oc-

cured. To work around this problem, we performed each test

three times. We discarded any outliers (defined as through-

put less than 10% of the average of the three runs), and
recorded the average of the remaining runs• Disregarding

outliers, results from repeated runs were generally within

one or two kilobytes per second of one another.

4.3 Traditional Interface

To provide a baseline for future comparison, we first exam-

ined the performance of Galley using a traditional read/write

interface. This interface forced each CP to make a separate
request for each record from each fork. The tests in this

section were performed by issuing asynchronous requests to

each fork for a single record. When a request from one fork

completed, a request for the next record from that fork was
issued. By issuing asynchronous requests to each IOP, we

were generally able to keep oal the IOPs in the system busy.
Since each CP accessed its portion of each subtile sequen-

tially, and since the forks were 10ad out contiguously on disk,
the IOPs were frequently able to schedule disk accesses ef-

fectively, even with the small amount of information offered

by the traditional interface. Furthermore, the CPs were gen-

eroaly able to issue requests in phase. That is, when an lOP

completed a request for CP 1, it would handle requests from
CPs 2 through n. By the time the lOP had completed the

request from CP n, it had received the next request from

CP 1. Thus, even without explicit synchronization among

the CPs, the IOPs were able to service requests from each

node fairly, and were able to make good use of the disk.

Figure 3 shows the total throughput achieved when read-
ing a file with various record sizes for each access pattern.
Figure 4 presents similar results for write performance. The

performance curves generally look similar to typical through-
put curves in other systems; that is, as the record size in-

creased, so did the performance. As in most systems, even-

tually a plateau was reached, and further increases in the

record size did not result in further performance increases.

The precise location of this plateau varied between patterns

and CP:IOP ratios. As in most systems, when accessing
data in small pieces, the total throughput was limited by

software overhead and by the high latency of transferring
data across a network, regardless of the access pattern.

When reading data in large chunks, the access pattern

had a greater effect on the performance. Under the parti-

tioned and interleaved access patterns, for small numbers
of IOPs, the bottleneck appeared to be the speed of the
disk. The partitioned pattern was limited to 50% of the

peak throughput, due to excessive seeking between file re-

gions, while the interleaved pattern was limited only by the
disks' sustainable throughput.

When the system had 32 or 64 IOPs, however, the per-

formance with large requests was greatly affected by the
network. The CPs were clearly capable of handling large

amounts of data, but when that data was being received

from many sources at once, congestion drastically degraded

overall performance. This degradation became evident at
larger request sizes, as the chances and cost of congestion
increased. It is not clear whether this congestion was an el-

b-

35

30-

25-

20-

15-

Partitioned Access Pattern

10-

5-

GI
64 256

4 IOPs _--
8 IOPs 4..

16 IOPs -o--
32 lOPs -x-
64 lOPs "_ - I

.x /t
2"

x _L ,Pl

.I" ":-'(....7:"
x'.., . .+" ._"

1024 40_)6 16._ 84 65536

Record Size

rs.s

g.

F-

35

30-

25-

20-

15-

10-

Interleaved Access Pattern

5-

G j
64 256

/
4 lOPs -.-- m - - B- -
81Ops + /% _x,, l16 lOPs -o- - / x'm'

32 lOPs .x- ." ,_"
64 lOPs -A - / x ,

i " ,, /

dr.' ,, ..%...+. /

/. 15
, ' " x, /

d.' ,/ ." ' It :

/.x m" .,¢

10124 4()96 16384 65536
Record Size

Broadcast Access Pattern

8 IOPs -+--
16 lOPs _ -
32 lOPs -x-

_ 64lOPs -- - ¢2('_r.'.

,,,:,:'
I d ,:.:'_ /

z_'r.

64 256 1024 4096 16384 65536

Record Size

b-

Figure 3: Throughput for read requests using the traditional
Unix-like interface. There were 16 CPs in every case. Note

the different scales on the y-axis.

fect of the heavyweight TCP/IP protocol, or of the network
hardware. More seriously, this contention caused the com-

pute processors to become unsynchronized; their requests

then arrived at each IOP widely separated in time, which

seriously degraded the effectiveness of the disk scheduler.
Indeed, this effect is inherent in the structure of the tra-
ditional interface and could also occur when the CPs ate

unsynchronized for other reasons (e.g., if a CP's I/O is in-
terspersed with computation). The disk scheduler's ineffec-
tiveness caused extra seeks in the partitioned pattern, and

missed disk rotations and thrashing of the disk's buffer in
the interleaved pattern. In an attempt to reduce this con-

e_

45

4O-

35-

3O-

25-

20-

Partitioned Access Pattern

4 lOPS
8 lOPS -+"

16 lOPs "Q-"
32 lOPs "×"
64 lOPs "_ -

/

/

• .x

/ x

/ x"

151 /x " e _tI"

hr_^l AV/ .a''Et + ..÷-.

5-I _"._'" ,.--÷..... "÷""

U I I • I I I

64 256 1024 4096 16384 65536
Record Size

45

40-

35-

30-

25-

20-

Interleaved Access Pattern

4 lOPS -*--
8 lOPS -÷--

16 IOPS -o--
32 IOPS -x.
64 lOPs -A .

,/

4(
/

/ X"

•(.X
/ x

/
• ,x ,13""

_/.. .,,--
I .X .,_ ÷.....,I*.• -

-1 .,,jIA' " . .4"" ""

;. I
OT -_ " T _ , I
64 256 1024 4096 16384 65536

Record Size

Figure 4: Throughput for write requests using the tradi-

tioned Unix-like interface. There were 16 CPs in every case.

tention, we experimented with a clusteringstrategy. Rather

than having all 16 CPs attempt to access all 32 or 64 IOPs si-
multaneously, we had the first 4 CPs access the first 16 IOPs,

and so on. When a CP finished reading all the data from
its first cluster, it began reading data from the next cluster.

Nitzberg experimented with a similar strategy on CFS to re-

duce contention for cache space on the IOP [Nit92]. Figure 5

shows the results of our clustering experiment. Clearly, re-

ducing the number of active sockets reduced the congestion
at each CP, and improved overall performance.

Under the broadcast access pattern, data was read from

the disk once, when the first compute processor requested
it, and stored in the TOP's cache. When subsequent CPs
requested the same data, it was retrieved from the cache
rather than the disk. Since each piece of data was used many

times, the cost of accessing the disk was amortized over a

number of requests, and the limiting factors were software
and network overhead. Again, network contention affected

performance for large numbers of TOPs, but since every CP
accessed exactly the same disk blocks, there was no further

degradation caused by poor disk performance. As a result,

when broadcasting we merely see a slower rate of increase

for large numbers of TOPs rather than an actual reduction
in performance.

When writing data, the access pattern appeared to have

less of an impact on performance. While the write per-
formance for a partitioned pattern was comparable to the

140

120-

100-

80-

60-

40-

Partitioned Access Pattern

Simple/32 lOPs -e-
Simple/64 lOPs
UlUstered/32 lOPs -o--
Clustered/64 lOPs "6""

.,il

¢
t t

/

i

64 256 1024 4096 16384 65536
Record Size

tn

e_

140

120-

100-

80-

6O-

40-

20-

e:
64

Interleaved Access Pattern

Simple/32 lOPs -e---
Simple/64 IOPs

Clustered/32 lOPs -o- -
Clustexedt64 lOPs -_-"

,&.-,

i I

i
i

i
i

s

/'
s Jl_- - -I_- - -

0
t,

256 10124 4096 16384 65536
Record Size

Figure 5: Throughput for read requests using both a simple

strategy and a clustering strategy. There were 16 CPs in
every case.

read performance on the same pattern, the performance on
interleaved patterns was significantly lower than when read-
ing. This difference in performance was primarily caused by

Galley's write protocol. Reading data is a simple process:
when a compute processor wants to read data, it issues a

request to an I/O processor, and waits for the data to be

transferred. Writing is more complicated: when a compute

processor wants to write data to a block, it sends a request
to the I/0 processor, waits for an 'ack', and only then begins
sending the data. This ack is used to ensure that the I/O
processor has space in its file cache to receive the incoming

data. Writing is particularly expensive for requests smaller
than the file system's block size. When an IOP is asked to
write a single record to a block, the whole block must be
read from disk before we can write the new, small piece of
data. Reading this block increases the amount of disk I/O,
leaving less bandwidth for the application.

Network contention was not a significant issue when writ-
ing data. When reading data, the bottleneck discussed above
was caused by contention at the receiving side of a network
connection. In this case, the request-response write protocol
functions as a form of flow control; an lOP will not request
more data than it is able to handle.

4.4 Strided Interface

When reading data with a traditional interface, in many

cases we were able to achieve about 95% of the disks' peak

sustainable performance. This best-case performance seems

respectable, but our performance with small record sizes was

certainly less than satisfactory. The goal of our new inter-

faces is to provide high performance for the whole range

of record sizes, with particular emphasis on providing high
throughput for small records. As described in [NK96], our

higher-level interfaces are essentially different faces on the

same underlying mechanism, and the performance of one is

indicative of the performance of the others. The tests in

this section were again performed by issuing asynchronous

requests to each fork. Rather than issuing a series of single-
record requests to each IOP, we used the strided interface

to issue only a single request to each IOP. That single re-
quest identified all the records that should be transferred to

or from that lOP. All other experimental conditions were

identical to those in the previous section.

Figure 6 shows the total throughput achieved when read-

ing a file with various record sizes for each access pattern

using the new interface, and Figure ? shows corresponding
results for writing. The most striking difference between
these graphs and those for the traditional interface is that,

in most cases we were able to achieve peak performance with

records as small as 64 bytes--two or three orders of mag-
nitude smaller than the request sizes required to achieve
peak throughput using the traditional interface. Other than

increased opportunities for intelligent disk scheduling, the
primary performance benefit of our interface was a reduc-

tion in the number of messages, accomplished by packing

small chunks of data into larger packets before transmitting
them to the receiving node.

When using the strided interface to read or write an in-

terleaved access pattern, or to write a partitioned access

pattern, the maximum throughput increased slightly over
the traditional interface for small numbers of IOPs. When

reading a partitioned access pattern using the strided in-
terface with a small number of IOPs, however, the peak

throughput nearly doubled. This increase in peak perfor-

mance for partitioned reads was a result of the IOP having

complete information about every CP's access pattern. This
information allowed the IOP to intelligently schedule tens or

hundreds of disk accesses when the requests initiaJly arrived.
Using the traditional interface, each IOP was limited to ar-

ranging a schedule based on only a single request per CP.

Once again, network contention was a problem for large
numbers of lOPs. Unlike in the traditional interface, the

contention did not interfere with disk scheduling, because

the strided interface provides complete information up front,
enabling a perfect disk schedule. Unfortunately, the best

disk schedule is often the worst network schedule, as in the

partitioned pattern, where all IOPs first served CP 1, then

CP 2, and so forth. A similar clustering strategy might
improve performance here as well.

While it is clear that the strided interface allowed the file

system to deliver much better performance, the throughput

plots shown in Figures 6 and 7 present only part of the

picture. Figure 8 shows the speedup of the strided-read in-

terface over a traditional read interface, and Figure 9 shows

similar results for the write interfaces. 2 When using either

a partitioned or interleaved pattern, the strided interface

aThese speedup results are based on the performance using the

simple strategy--not the clustered lOP strategy.

e_

O

Partitioned Access Panem

,X. - g. .:

"X+ , _, X"

.Q _ _Q . -I
•J3" - -0- - -[3" "

701
.._g m 4b=. ..._ dr,"

60- 4 lOPs
8 lOPs -+--

50- 16 IOPs -o--
32 IOPs -x.
64 _OPs +"+" .x

40. "x.

3O-

20_ - -o - -_"
• -++---.+... -4-...4- +. - • .-,I,.... ,i..+. - ..i. •...,i,.

10-

0
64 256 io':,4 '16384 65536

Record Size

120

lO0-

8d

60.

Interleaved Access Pattern

4 lOPs -+--
8 lOPs .+.-

16 lOPs -I_-

64 IOPs -'* -

A

.x,
.)¢ ")¢ • -_ - .x. " g- -x* ' K" " X "

40.
_ _ ..q_ .. -13 - -G' - -Q --m- -_ - ._a- -B--O-

20.
+--4,--''+'--÷..'÷ ÷''.'4"---÷ ÷" "" "_"

o
64 2_6 ' 40_ '1024 16384 65536

Record Size

Broadcast Access Pattern

190 _ _ - - m" - S-. B. - "O- - "O- - _ - "O" " "O= - 4

" X" 3(- . X" "_ " "X- - I<" .X . "X" • .X- .

6 " "++ _
+_q / 8lOPs

_" 40-t _ 16 lOPs -0--
"_ { /" " 32 lOPs -x-

30-Jr/ 64 lOPs "* "
T

20 t
64 256 10'24 40_ 16384 65536

Record Size

Figure 6: Throughput for read requests using the strided in-

terface. There were 16 CPs in every case. Note the different
scales on the y-axis.

read small records 55 to 95 times fasterthan the traditional

interface,and wrote small records 22 to 55 times faster.

Generally, the configurations with fewer IOPs experienced

a greater increase in performance, due to the network con-

tention described above. The broadcast-read pattern had

the largest speedups for small records, ranging from 90 to

183. Although there was less room for improvement with

largerecords,better disk scheduling in the partitioned-read

pattern significantlyimproved some cases. Note that since
each fork was contiguously laidout on disk,the speedup due

to disk scheduling islower than we would expect to see in a

production system, where forks might be scattered across a

r.n

R

45

4O-

354

30-

25 i

20-

Partitioned Access Pattern

/

-X" - X . .)¢ . ;g- . X - "_ " _g" - X • "X" "

- .Q - -G - -Q - -_ " -B - -g - -m - -a - -N - -

4 lOPs
8 lOPs -÷..

i_ 16 lOPs -o-. j
32 IOPs ×" [

64IOPs -_-]

...: 4---.÷ 4--.--F ---÷ ÷---4--.._

01 , t
64 256 1024 4096 '16384 65536

Record Size

m

g
.q
e_

45

35-

30-

25 _

20-

'11

64

Interleaved Access Pattern

.X- .

.X"

• X" -X - .X. - _(. -X
• °X"

4 IOf's -.--

.e- - e'8 lOPS
Q _t--tt-- " 16 IOPs -a--i-- _- -. m

32 IOPs -x- [
64 lOPs "_ "l

256 10124 4096 16384 65536
Record Size

Figure 7: Throughput for write requests using the strided

interface. There were 16 CPs in every case.

disk.

5 Related Work

Many different parallel file systems have been developed over

the past decade. While many of these were similar to the

traditional Unix-style file system, there have been also sev-

eral more ambitious attempts.

Bridge, one of the earliest parallel file systems, has disks

on every node -- their model does not distinguish between

CPs and IOPs. ridge provides both a traditional Unix-like

interface, and a more complex interface that allows appli-

cations to explicitly access the local file systems on each

node [Dib90].

Intel's Concurrent File System (CFS) [Pie89, Nit92], fre-

quently cited as the canonical first-generation parallel file

system, and its successor, PFS, are examples of file systems

that provide a linear file model to the applications, and of-

fer a Unix-like interface to the data. Other examples of this

type of parallel file system are SUNMOS (and its successor,

PUMA) [WMR+94], sis [LIN+93], and CMMD [BGST93].

PPFS provides the end user with a linear file that is ac-

cessed with primitives that are similar to the traditional

read()/urite() interface. In PPFS, however, the basic

transfer unit is an application-defined record rather than a

byte. PPFS includes a number of predefined data distribu-

tions, which map the logical, linear stream of records to an

e_

120

m0 _

80-

60-

Partitioned Access Pauern

40-

20-

0
64 256

4 lOPs --*---
_' 8 lOPs -+-.
.\ 16 IOPs -o- -
_ 32 lOPs -x.

._k 64 IOPs -_ -

ID--<k o .X .

10_24 4096 16384 65536
Record Size

e_

120.

IOO-
I

S0_

60-

Interleaved Access Pattern

4O-

20-

0
64

4 IOPs _--

8 lOPs -+--
, 16 lOPs -o- -

\ _ 32 lOPs .x-

'_k 64 lOPs "_ "

'.'.:_
"_.__ \

.

256 1024 4096 16384 65536

Record Size

2OO
Broadcast Access Pattern

180 _

_r,e:
1411"

120"

100"

8O"

20"

6
64

4 lOPs

8 lOPs _.-
16 lOPs

'" _ 32 lOPs .x.

"..+\ 64 lOPs "*-

L'.
- '2,

_
256 1024 4096 • - :16384 65536

Record Size

Figure 8: Increase in throughput for read requests using the

strided interface. Note the different scales on the y-axis.

underlying (disk, record) pair, and also allows an appli-

cation to provide its own mapping function.

The ELFS system [GP91] and the Hurricane File Sys-

tem [Kri94] provide object-oriented interfaces. These in-

terfaces allow library designers to implement complex func-

tionality (e.g., transparent replication of data, application-

specific caching algorithms) in their files, but to hide that

complexity from end users.

The Vesta file system, and its commercial version, PI-

OFS, address some of the same issues as Galley [CFP+95].

Most importantly, both recognize that data structures stored

in a single file on disk are likely to be partitioned across

multiple processes in a parallel application, and that new

6O
Partitioned Access PaHern

4 IOPs -*--

i\ s lOPs16 lOPs -o--
32 IOPs "×"

40" ' _. 64 lOPs _ "

30- '_,_

64 256 1024 4096 16384 65536
Record Size

oq

60

40_: _

30-'"

Interleaved Access Pattern

4 lOPs -4,--
8 lOPs -÷--

16 lOPs -o- -
32 lOPs -x
64 lOPs -_ "

'.\\

X.%.

10- _
0 Y "_ T " '

64 256 10'24 4096 16384 65536
Record Size

Figure 9: Increase in throughput for write requests using
the strided interface.

interfaces are required to express this partitioning. Galley
was designed as a bottom-up approach to the problem, by

examining which access patterns are actually being used by

applications, and supporting those patterns efficiently with-
out regard to the higher-level semantics of those patterns.

Vesta adopts a top-down approach. Vesta begins with the
assumption that all shared data structures can be repre-
sented as a rectangular array, and allows the application

to describe how the array should be partitioned across the
processors. This high-level description gives Vesta much the
same information as Galley's interfaces. Indeed, a Vesta-

style interface could be easily implemented on top of Gal-
ley's low-level primitives.

While Vesta's approach offers many of the benefits of
Galley's interfaces, it also has several limitations. The first
is that there is no easy way to work with irregular data
structures under Vesta. Unless your data can be mapped
onto a rectangular array, you cannot make use of Vesta:s

partitioning schemes. Second, Vesta's partitioning schemes
do not allow for irregular partitioning. Even if your data
can be fit into a rectangular model, Vesta only allows the
data to be partitioned into regularly-distributed, rectangu-

lar sub-blocks of a single size. Examples in [CFP+95] illus-
trate both the flexibilty and limitations of Vesta's approach
to partitioning. Finally, Vesta does not provide an easy

way for two processes to access overlapping regions of a file;
each process's partition is strictly disjoint from every other

process's partition. Since many models of physical events
require logically adjacent nodes to share boundary informa-
tion, this could be an important restriction. Indeed, we have
observed that such overlapping file access is likely to occur
in practice. Results in [NKP+95], show that most read-only
files had at least some bytes that were accessed by multi-
ple processors. We should note that the same results show

that in many cases, the strictly disjoint partitioning offered
by Vesta may match the applications' needs for write-only
files.

In addition to full file systems, there are numerous in-

terfaces that are designed to allow programmers to describe
their I/O needs at a higher semantic level. These interfaces

are sometimes tightly integrated into a particular language

such as HPF [BGMZ92, HPF93] or CMF [Thi94]. There are
also many language-independent libraries to support paxal-

lel I/O, usually to support distributed matrices [TBC+94,
SW94]. The Jovian project explores the issues relating to
the storage of irregular structures [BBS + 94]. Finally, there
are also plans to extend the MPI standard to include parallel
I/O operations [MPI94, CFF+95].

These systems and their interfaces could all be consid-

ered candidates for implementation on top of Galley. Indeed,

Galley is specifically designed as a low-level file system ca-

pable of supporting multiple high-level interfaces.

6 Summary

Based on the results of several workload characterization

studies, we have designed Galley, a new parallel file system
that attempts to rectify some of the shortcomings of exist-
ing file systems. Galley is based on a new three-dimensional

structuring of files, which provides tremendous flexibility
and control to applications and libraries. We show how Gal-
ley's strided I/O request reduced the aggregate latency of
multiple small requests and allowed the file system to opti-
mize the disk accesses required to satisfy the request.

The results of our experiments indicate that our new
style of interface increased performance by several orders of

magnitude. More importantly, this new interface allows high
performance on access patterns that are known to be com-
mon in scientific applications, and which are known perform

poorly on most current parallel file systems.

Future Work. This performance study reveals several ar-
eas for further work. First, Galley currently only _chieves

about 50% of the potential throughput for write operations.
While it is not surprising that write performance should lag
read performance, a factor of 2 seems excessively slow. Fur-

thermore, Galley currently supports only a single disk per
IOP. Since our maximum throughput is frequently limited
by the disk's maximum throughput, adding support for mul-
tiple disks at the IOP is a high priority. Finally, we have
only examined the performance of the system running mi-
crobenchmaxks. To really understand Galley's performance,

we plan to study how real applications perform on Galley.

Availability. Although Galley is still alpha-quaLity software,

there axe several projects underway to implement libraries,

applications, and a compiler on top of it. We hope that
these projects will help identify weak points in our imple-
mentation, and lead to a more robust system. We anticipate
making Galley publicly available in the near future.

References

[BBH95]

[BBS + 94]

[BGMZ92]

[BGST93]

[CFF+95]

[CFP+95]

[CK93]

[Dib90]

Sandra Johnson Baylor, Caroline B. Ben-

veniste, and Yarson Hsu. Performance evMu-

ation of a parallel I/O architecture. In Proceed-

ings of the 9th ACM International Conference

on Supercomputing, pages 404-413, Barcelona,
July 1995.

Robert Bennett, Kelvin Bryant, Alan Suss-

man, Raja Das, and Joel Saltz. Jovian:

A framework for optimizing parallel I/O.
In Proceedings of the Scalable Parallel Li-

braries Conference, pages 10-20. IEEE
Computer Society Press, October 1994.

ftp://hpsl.cs.umd.edu/pub/papers/splc94.ps.Z.

Peter Brezany, Michael Gernt, Piyush Mehotra,
and Hans Zima. Concurrent file operations in a
High Performance FORTRAN. In Proceedings

of Supercomputing '9_, pages 230-237, 1992.

Michael L. Best, Adam Greenberg, Craig Stun-
fill, and Lewis W. Tucker. CMMD I/O: A
parallel Unix I/O. In Proceedings of the Sev-

enth International Parallel Processing Sympo-

sium, pages 489-495, 1993.

Peter Corbett, Dror Feitelson, Sam Fineberg,
Yarsun Hsu, Bill Nitzberg, Jean-Pierre Prost,
Maxc Snir, Bernard Traversat, and Parkson
Wong. Overview of the MPI-IO parallel I/O
interface. In IPPS '95 Workshop on I/O in
Parallel and Distributed Systems, pages 1-15,

Santa Barbara, CA, April 1995.

Peter F. Corbett, Dror G. Feitelson, Jean-

Pierre Prost, George S. Almasi, Sandra John-
son Baylor, Anthony S. Bolmarcich, Yarsun
Hsu, Julian Satran, Marc Snir, Robert Colao,

Brian Herr, Joseph Kavaky, Thomas R. Mor-

gan, and Anthony Zlotek. Parallel file systems
for the IBM SP computers. IBM Systems Jour-

nal, pages 222-248, 1995.

Thomas H. Cormen and David Kotz. Integrat-

ing theory and practice in parallel file systems.
In Proceedings of the 1993 DA GS/PC Sympo-

sium, pages 64-74, Hanover, NH, June 1993.
Dartmouth Institute for Advanced Graduate
Studies. Revised as Dartmouth PCS-TR93-188

on 9/20/94.

Peter C. Dibble. A Parallel Interleaved File

System. PhD thesis, University of Rochester,
March 1990.

[GP91]

[HP91]

Andrew S. Grimshaw and Jeff Prem. High
performance parallel file objects. In Sixth
Annual Distributed-Memory Computer Confer-

ence, pages 720-723, 1991.

Hewlett Packard. HP97556/58/60 5._5-inch

SCSI Disk Drives Technical Reference Manual,
second edition, June 1991. HP Part number
5960-0115.

[HPF93]

[IBM94]

[KFG94]

[KN94]

[Kot94]

[KR94]

[Kri94]

[KTR94]

[LIN+93]

[LMKQ89]

[MK91]

[MPI94]

High Performance Fortran Forum. High
Performance Fortran Language Spec-

ification, 1.0 edition, May 3 1993.
http: / /www.erc.msstate.edu/hpff /report.html.

IBM. AIX Version 3._ General Programming
Concepts, twelfth edition, October 1994.

John F. Karpovich, James C. French, and An-
drew S. Grimshaw. High performance access to
radio astronomy data: A case study. In Pro-

ceedings of the 7th International Working Con-
ference on Scientific and Statistical Database

Management, pages 240-249, September 1994.
Also available as UVA TR CS-94--25.

David Kotz and Ntis Nieuwejaar. Dynamic file-
access characteristics of a production parallel

scientific workload. In Proceedings of Supercom-

puting '94, pages 640-649, November 1994.

David Kotz. Disk-directed I/O for MIMD mul-

tiprocessors. In Proceedings of the 1994 Sympo-

sium on Operating Systems Design and Imple-

mentation, pages 61-74, November 1994. Up-
dated as Dartmouth TR PCS-TR94-226 on

November 8, 1994.

Thomas T. Kwan and Daniel A. Reed. Perfor-

mance of the CM-5 scalable file system. In Pro-

ceedings of the 8th A CM International Confer-

enee on Supercomputing, pages 156-165, July
1994.

Orran Krieger. HFS: A flexible file system for

shared-memory multiproeessors. PhD thesis,
University of Toronto, October 1994.

David Kotz, Song Bac Toh, and Srirarn Rad-
hakrishnan. A detailed simulation model of the

HP 97560 disk drive. Technical Report PCS-
TR94-220, Dept. of Computer Science, Dart-
mouth College, July 1994.

Susan J. LoVerso, Marshall Isman, Andy
Nanopoulos, William Nesheim, Ewan D. Milne,

and Richard Wheeler. sfs: A paxallel file sys-
tem for the CM-5. In Proceedings of the 1993

Summer USENIX Conference, pages 291-305,
1993.

Samuel J. Leilier,Marshall Kirk McKusick,
Michael J. Karels, and John S. Quarterman.

The Design and Implementation of the _.JBSD

UNIX Operating System. Addison-Wesley,
1989.

Ethaa L. Miller and Randy H. Katz. In-
put/output behavior of supercomputer appli-
cations. In Proceedings of Supercomputing '91,

pages 567-576, November 1991.

Message Passing Interface Forum.
MPI: A Message-Passing Interface

Standard, 1.0 edition, May 5 1994.
http: / /www.mcs.anl.gov /Projects/mpi/standard.html.

[NAS94]

[Nit92]

[NK95]

[NK96]

[NKP+95]

[OCH+85]

[PEK+95]

[PFDJ89]

[Pie89]

[PP93]

[RW94]

NASA/Science Office of Standards and Tech-

nology, NASA Goddard Space Flight Center,
Greensbelt, MD 020771. A User's Guide for

the Flexible Image Transport System (FITS),
3.1 edition, May 1994.

Bill Nitzberg. Performance of the iPSC/860
Concurrent File System. Technical Report

RND-92-020, NAS Systems Division, NASA
Ames, December 1992.

Nils Nieuwejaar and David Kotz. Low-level in-

terfaces for high-level parallel I/O. In IPPS '95

Workshop on I/O in Parallel and Distributed

Systems, pages 47-62, April 1995.

Ntis Nieuwejaar and David Kotz. The Galley

parallel file system. In Proceedings o] the IOth

AGM International Conference on Supercom-
puting, May 1996. To appear.

Nils Nieuwejaar, David Kotz, Apratim Pu-
rakayastha, Carla Schlatter Ellis, and Michael

Best. File-access characteristics of parallel sci-

entific workloads. Technical Report PCS-TR95-
263, Dept. of Computer Science, Dartmouth

College, August 1995. Submitted to IEEE
TPDS.

John Ousterhout, Hervd Da Costa, David Har-

rison, John Kunze, Mike Kupfer, and James

Thompson. A trace driven analysis of the UNIX

4.2 BSD file system. In Proceedings of the Tenth

ACM Symposium on Operating Systems Prin-
ciples, pages 15-24, December 1985.

Apt&tim Purakayastha, Carla Schlatter Ellis,

David Kotz, Nils Nieuwejaar, and Michael Best.

Characterizing parallel file-access patterns on a
large-scale multiprocessor. In Proceedings of the

Ninth International Parallel Processing Sympo-

sium, pages 165-172, April 1995.

Terrence W. Pratt, James C. French, Phillip M.

Dickens, and Stanley A. Janet, Jr. A compari-

son of the architecture and performance of two

parallel file systems. In Fourth Conference on

Hypercube Concurrent Computers and Applica-

tions, pages 161-166, 1989.

Paul Pierce. A concurrent file system for a
highly parallel mass storage system. In Fourth

Con]erence on Hypercube Concurrent Comput-
ers and Applications, pages 155-160, 1989.

Barbara K. Pa.squale and George C. Polyzos. A
static analysis of I/O characteristics of scientific

applications in a production workload. In Pro-

ceedings o] Supercomputing '93, pages 388-397,
1993.

Chris Ruemmler and John Wilkes. An intro-

duction to disk drive modeling. 1EEE Com-

puter, 27(3):17-28, March 1994.

[SW94]

[sw95]

[TBC+94]

[Thi94]

[WGRW93]

[WM R + 94]

K. E. Seamons and M. Winslett. An efficient
abstract interface for multidimensional array

I/O. In Proceedings of Supercomputing '94,

pages 650--659, November 1994.

K. E. Seamons and M. Winslett. A data

management approach for handling large com-

pressed arrays in high performance computing.

In Proceedings o] the Seventh Symposium on

the Frontiers of Massively Parallel Computa-
tion, pages 119-128, February 1995.

Rajeev Thakur, Rajesh Bordawekar, Alok

Choudhary, Ravi Ponnusamy, and Tarvinder

Singh. PASSION runtime library for parallel
I/O. In Proceedings o] the Scalable Parallel

Libraries Conference, pages 119-128, October
1994.

Thinking Machines Corporation, Cambridge,

Mass. CM Fortran User's Gi_ide, 2.1 edition,
January 1994.

David Womble, David Greenberg, Rolf Riesen,
and Stephen Wheat. Out of core, out of mind:
Practical parallel I/O. In Proceedings o/ the

Scalable Parallel Libraries Conference, pages
10-16, Mississippi State University, October
1993.

Stephen R. Wheat, Arthur B. Maccabe, Roll

Riesen, David W. van Dresser, and T. Mack

Stallcup. PUMA: An operating system for man-
sively parallel systems. In Proceedings of the
Twenty-Seventh Annual Hawaii International

Conference on System Sciences, pages 56-65,
1994.

